Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 2): 130729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460643

RESUMO

Astrocyte elevated gene-1 (AEG-1) oncogene is a notorious and evolving target in a variety of human malignancies including osteosarcoma. The RNA interference (RNAi) has been clinically proven to effectively knock down specific genes. To successfully implement RNAi in vivo, protective vectors are required not only to protect unstable siRNAs from degradation, but also to deliver siRNAs to target cells with controlled release. Here, we synthesized a Zein-poly(l-lysine) dendrons non-viral modular system that enables efficient siRNA-targeted AEG-1 gene silencing in osteosarcoma and encapsulation of antitumor drugs for controlled release. The rational design of the ZDP integrates the non-ionic and low immunogenicity of Zein and the positive charge of the poly(l-lysine) dendrons (DPLL) to encapsulate siRNA and doxorubicin (DOX) payloads via electrostatic complexes and achieve pH-controlled release in a lysosomal acidic microenvironment. Nanocomplexes-directed delivery greatly improves siRNA stability, uptake, and AEG-1 sequence-specific knockdown in 143B cells, with transfection efficiencies comparable to those of commercial lipofectamine but with lower cytotoxicity. This AEG-1-focused RNAi therapy supplemented with chemotherapy inhibited, and was effective in inhibiting the growth in of osteosarcoma xenografts mouse models. The combination therapy is an alternative or combinatorial strategy that can produce durable inhibitory responses in osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Dendrímeros , Nanopartículas , Osteossarcoma , Zeína , Animais , Camundongos , Humanos , Polilisina , Azidas , Preparações de Ação Retardada , Alcinos , Doxorrubicina/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , RNA Interferente Pequeno/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Microambiente Tumoral
2.
J Colloid Interface Sci ; 664: 74-83, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460386

RESUMO

Active pharmaceutical ingredients (APIs) crystal preparation is a significant issue for the pharmaceutical development attributed to the effect on anti-inflammatory, anti-bacteria, and anti-viral, etc. While, the massive preparation of API crystal with high polymorphism selectivity is still a pendent challenge. Here, we firstly proposed a criterion according to the molecular aggregation, molecular orientation, and hydrogen bond energy between INA molecules from molecular dynamics (MD) simulations, which predicted the hydrogen bond architecture in crystal under different electric fields, hinting the recognition of crystal polymorphism. Then, an electric field governing confined liquid crystallization was constructed to achieve the INA crystal polymorphism screening relying on the criterion. Further, magnifying confined liquid volume by 5000 times from 1.0 µL to 5.0 mL realized the massive preparation of INA crystal with high polymorphic purity (>98.4%), giving a unique pathway for crystal engineering and pharmaceutical industry on the development of innovative and generic API based drugs.

3.
J Colloid Interface Sci ; 648: 365-375, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301161

RESUMO

Herein, a facile bionic research platform with fabricated hydrogel composite membrane (HCM) is constructed to uncover the effects of the main components of coffee's metabolites on MSUM crystallization. Tailored and biosafety polyethylene glycol diacrylate/N-isopropyl acrylamide (PEGDA/NIPAM) HCM allows the proper mass transfer of coffee's metabolites and can well simulate the process of coffee's metabolites acting in the joint system. With the validations of this platform, it is shown that chlorogenic acid (CGA) can hinder the MSUM crystals formation from 45 h (control group) to 122 h (2 mM CGA), which is the most likely reason that reduces the risk of gout after long-term coffee consumption. Molecular dynamics simulation further indicates that the high interaction energy (Eint) between CGA and MSUM crystal surface and the high electronegativity of CGA both contribute to the restraint of MSUM crystal formation. In conclusion, the fabricated HCM, as the core functional materials of the research platform, presents the understanding of the interaction between coffee consumption and gout control.


Assuntos
Gota , Ácido Úrico , Humanos , Ácido Úrico/química , Café , Hidrogéis , Cristalização , Gota/metabolismo
4.
J Colloid Interface Sci ; 629(Pt A): 334-345, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36081212

RESUMO

Droplet crystallization behavior held great potential in crystal preparation, micromaterial engineering, and molecular assembly. However, restricted by natural surface tension, the intrinsic crystallization regulation and efficient harvest of high quality crystal in diverse droplet features were still a great challenge. Herein, we developed a 3D printed semiflexible micro crystallizer with two aspectant sessile platforms that could simultaneously construct a series of heteromorphic droplets (HDs) and controllable HD shape. By shaping HD on the interface of the platform, central-converging micro-flows were generated by coordinating the gas-liquid interface and flow intensity (i.e., Ra/Ma) during HD crystallization from 'barrel', 'can', to 'sand clock' shape, which was validated via simulative and experimental research. Therefore, HDs, constructed in semiflexible micro crystallizer, exhibited efficient screening (>70 %) of single cubic crystal just at the center zone of platform, even under wide ranges of concentration and volume, manifesting excellent repeatability on high quality crystal harvest and relevant interfacial science research.


Assuntos
Cristalização , Impressão Tridimensional
5.
Sensors (Basel) ; 22(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36236599

RESUMO

The B-dot sensor is a type of Rogowski coil widely used in the measurement of current. However, the accuracy of the B-dot for measuring aircraft high-frequency lightning current is greatly affected by factors such as numerical integration drift, high-frequency oscillation, and calibration. In this study, a new design and optimization for improving the B-dot measuring accuracy was carried out. To correct the drift of the numerical integral of the measurement signal in differential mode, the measuring current was reconstructed based on the nonlinear least squares method. The sensor was then optimized by isolating the sampling resistance and matching the impedance with a voltage follower. A low-cost coaxial loop calibration system was also designed to calibrate the high frequency and strong magnetic fields more accurately. Finally, the optimized B-dot sensor accuracy was greatly improved with a measuring range of 30 kA/m, an error of 3.1%, and a high-frequency response of 50 MHz. Our study greatly increases the accuracy of measuring aircraft high-frequency lightning current.

6.
ACS Appl Mater Interfaces ; 14(3): 4739-4749, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015497

RESUMO

Gas-liquid (G-L) reactive crystallization is a major technology for advanced materials construction, which requires a short diffusion path on the interface to ensure the reactant supply and stable crystal nucleation under ultrahigh supersaturation. Herein, a covalent organic framework (COF) membrane with homo hierarchical pore structures was proposed as an effective interfacial material for the regulation of confined reactive crystallization. By combining the ordered nanopores of COFs and micropores of anodic aluminum oxide (AAO), the COF membrane simultaneously provided an excellent nanoscale diffusion-reaction regulation network as the molecular-level confined G-L reactive interface and adjustable submicrometer gas mass transfer channels. The highly selective construction of CaCO3 superstructures was then achieved. When the submicrometer primary pore size rp of the constructed COF membrane ranged from 120 to 1.6 nm, the diffusion mechanism of CO2 varied from viscous flow diffusion to Knudsen diffusion. The growth orientation of CaCO3 crystals was well confined to obtain spindle-shaped crystals with high selectivity. Meanwhile, the crystal selectivity factor (cube/sphere) increased from 0 to 3.53 under the low interfacial nuclear barrier. Thus, the COF membrane with coupled micro-nanostructures successfully screened the directional preparation conditions for diverse CaCO3 superstructures, which also paved a meaningful path for the functional application of COFs in accurate mass transfer control and confined chemical reactions.

7.
J Paediatr Child Health ; 56(9): 1382-1387, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32479688

RESUMO

AIM: To assess the relationship between clinical parameters and medium term recovery time of coronary artery lesions (CALs). METHODS: In total, 344 Kawasaki disease patients were screened and 311 Kawasaki disease patients were included and followed-up for the next 2 years. Clinical records, clinical parameters and inflammatory biomarkers were collected for all subjects. RESULTS: Tumour necrosis factor (TNF)-α and myoglobin (MYO) levels in patients without recovery from CALs were significantly higher than those without CALs and with recovery from CALs. Kaplan-Meier survival analysis showed that in the high-TNF-α group, the estimated median time to recovery (5.0 months, 95% confidence interval (CI) 1.436-8.564) is significantly longer than the low-TNF-α group (2.00 months, 95% CI: 0.633-3.367, P = 0.044). Also, the estimated median time (5.0 months, 95% CI: 1.836-8.164) in the high-MYO group is significantly longer than the low-MYO group (2.00 months, 95% CI: 0.405-3.595, P = 0.002). Cox regression analysis showed independent factors for recovery of CALs included age, left coronary artery to aortic annulus ratio, TNF-α and MYO levels. CONCLUSIONS: These findings suggest that clinical parameters such as age, left coronary artery to aortic annulus ratio, TNF-α and MYO levels associate with medium term recovery time of CALs and could help in the design of a clinical strategy for the surveillance and prevention of late cardiovascular events.


Assuntos
Doença da Artéria Coronariana , Síndrome de Linfonodos Mucocutâneos , Humanos , Lactente , Síndrome de Linfonodos Mucocutâneos/complicações , Mioglobina , Fator de Necrose Tumoral alfa
8.
Mol Cells ; 40(2): 109-116, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28222496

RESUMO

Soybean agglutinin (SBA) is an anti-nutritional factor of soybean, affecting cell proliferation and inducing cytotoxicity. Integrins are transmembrane receptors, mediating a variety of cell biological processes. This research aims to study the effects of SBA on cell proliferation and cell cycle progression of the intestinal epithelial cell line from piglets (IPEC-J2), to identify the integrin subunits especially expressed in IPEC-J2s, and to analyze the functions of these integrins on IPEC-J2 cell cycle progression and SBA-induced IPEC-J2 cell cycle alteration. The results showed that SBA lowered cell proliferation rate as the cell cycle progression from G0/G1 to S phase (P < 0.05) was inhibited. Moreover, SBA lowered mRNA expression of cell cycle-related gene CDK4, Cyclin E and Cyclin D1 (P < 0.05). We successfully identified integrins α2, α3, α6, ß1, and ß4 in IPEC-J2s. These five subunits were crucial to maintain normal cell proliferation and cell cycle progression in IPEC-J2s. Restrain of either these five subunits by their inhibitors, lowered cell proliferation rate, and arrested the cells at G0/G1 phase of cell cycle (P < 0.05). Further analysis indicated that integrin α2, α6, and ß1 were involved in the blocking of G0/G1 phase induced by SBA. In conclusion, these results suggested that SBA lowered the IPEC-J2 cell proliferation rate through the perturbation of cell cycle progression. Furthermore, integrins were important for IPEC-J2 cell cycle progression, and they were involved in the process of SBA-induced cell cycle progression alteration, which provide a basis for further revealing SBA anti-proliferation and anti-nutritional mechanism.


Assuntos
Células Epiteliais/efeitos dos fármacos , Integrinas/metabolismo , Lectinas de Plantas/farmacologia , Proteínas de Soja/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Citometria de Fluxo , Fase G1/efeitos dos fármacos , Integrinas/antagonistas & inibidores , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Sincalida/análise , Sincalida/metabolismo , Suínos
9.
Springerplus ; 5(1): 1094, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27468395

RESUMO

Integrins are an important family of adhesion molecules that were first discovered two decades ago. Integrins are transmembrane heterodimeric glycoprotein receptors consisting of α and ß subunits, and are comprised of an extracellular domain, a transmembrane domain, and a cytoplasmic tail. Therein, integrin cytoplasmic domains may associate directly with numerous cytoskeletal proteins and intracellular signaling molecules, which are crucial for modulating fundamental cell processes and functions including cell adhesion, proliferation, migration, and survival. The purpose of this review is to describe the unique structure of each integrin subunit, primary cytoplasmic association proteins, and transduction signaling pathway of integrins, with an emphasis on their biological functions.

10.
J Clin Microbiol ; 52(7): 2573-82, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24829234

RESUMO

Fungal infections in the clinic have become increasingly serious. In many cases, the identification of clinically relevant fungi remains time-consuming and may also be unreliable. Matrix-assisted laser desorption ionization-time of flight mass spectroscopy (MALDI-TOF MS) is a newly developed diagnostic tool that is increasingly being employed to rapidly and accurately identify clinical pathogenic microorganisms. The present meta-analysis aimed to systematically evaluate the accuracy of MALDI-TOF MS for the identification of clinical pathogenic fungi. After a rigorous selection process, 33 articles, involving 38 trials and a total of 9,977 fungal isolates, were included in the meta-analysis. The random-effects pooled identification accuracy of MALDI-TOF MS increased from 0.955 (95% confidence interval [CI], 0.939 to 0.969) at the species level to 0.977 (95% CI, 0.955 to 0.993) at the genus level (P < 0.001; χ(2) = 15.452). Subgroup analyses were performed at the species level for several categories, including strain, source of strain, system, system database, and modified outcomes, to calculate the accuracy and to investigate heterogeneity. These analyses revealed significant differences between the overall meta-analysis and some of the subanalyses. In parallel, significant differences in heterogeneity among different systems and among different methods for calculating the identification ratios were found by multivariate metaregression, but none of the factors, except for the moderator of outcome, was significantly associated with heterogeneity by univariate metaregression. In summary, the MALDI-TOF MS method is highly accurate for the identification of clinically pathogenic fungi; future studies should analyze the comprehensive capability of this technology for clinical diagnostic microbiology.


Assuntos
Fungos/química , Fungos/classificação , Técnicas Microbiológicas/métodos , Micoses/diagnóstico , Micoses/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fungos/isolamento & purificação , Humanos , Micologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...